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Abstract

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in
which the human brain processes information. ANNs gather their knowledge by detecting the patterns and
relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from
hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which
constitute the neural structure and are organised in layers. The power of neural computations comes from connecting
neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural
network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The
weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed
sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function
to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training,
the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the
specified level of accuracy. Once the network is trained and tested it can be given new input information to predict
the output. Many types of neural networks have been designed already and new ones are invented every week but all
can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN
represents a promising modeling technique, especially for data sets having non-linear relationships which are
frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require
no knowledge of the data source but, since they often contain many weights that must be estimated, they require large
training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve
problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction
and modeling. Supervised associating networks can be applied in pharmaceutical fields as an alternative to
conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to
principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when
presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology
in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through
biopharmacy to clinical pharmacy. © 2000 Elsevier Science B.V. All rights reserved.
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1. Artificial intelligence

Artificial intelligence (AI) has been established as
the area of computer science dedicated to produc-
tion software capable of sophisticated, intelligent,
computations similar to those that the human brain
routinely performs. It includes methods, tools and
systems devoted to simulate human methods of
logical and inductive knowledge acquisition, rea-
soning of brain activity for solving problems. There
are two main categories of AI developments. The
first includes methods and systems that simulate
human experience and draw conclusions from a set
of rules, such as expert systems. The second in-
cludes systems that model the way the brain works,
for example, artificial neural networks (ANNs)
(Table 1).

Expert systems are knowledge-based systems, an
extension of conventional computing and are some-
times called the fifth generation of computing. This
knowledge base allows an expert to define the rules

that simulate a process of thinking and provides a
simple way to draw conclusions and solve problems
by following a set of rules. The idea of expert
systems is that logical thinking can be modelled by
compiling lists of logical propositions and perform-
ing logical transformations upon them. Expert
systems are useful for medical diagnosis, and other
diagnostic problem solving [1,2]. It provides a guide
for prediction and decision making in environ-
ments involving uncertainty and vagueness. Medi-
cal practice, for example, is often hampered by
incomplete and inexact scientific models of human
health and disease, and incomplete or sometimes
inaccurate data about individual patients.

ANNs are digitized models of a human brain,
computer programs designed to simulate the way
in which human brain processes information.
ANNs learn (or are trained) through experience
with appropriate learning exemplars just as people
do, not from programming. Neural networks
gather their knowledge by detecting the patterns
and relationships in data. The brain is an excellent
pattern recognition tool. When we look at a pen,
we know it is a pen because biological neurons in
a certain area of our brain have come across a
similar input pattern on previous occasions and
have learned to link that specific pattern with the
object description ‘pen’. Since our brain contains
billions of neurons which are fully interconnected,
we can learn and recognize an almost endless
variety of input patterns.

An average brain contains �100 billion neu-
rons, each of which has 1000–10 000 connections
with other neurons. Neurons consist of a cell body
which includes nucleus that controls the cell activ-
ity, many fine treads, dendrites, that carry informa-
tion into the cell, and one longer thread known as
the axon which carries the signal away (Fig. 1).
Impulses pass along the axon to the synapse, the
junction between one neuron and the next and
signals are passed from one to the next in an
all-or-none fashion. Neurons are organised in a
fully connected network and act like messenger in
receiving and sending impulses. The result is an
intelligent brain capable of learning, prediction and
recognition.

Table 1
Differences in approach between conventional computing and
ANNs

Characteristics Conventional comput- Artificial neural
ing (including expert networks
systems)

Learning method By rules (didactically) By example
(Socratically)

Functions Logically Perceptual pattern
ParallelSequentialProcessing style

Fig. 1. Neuron cell.
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Fig. 2. Model of an artificial neuron.

tion and one output. PE is essentially an equation
which balance inputs and outputs. ANNs are also
called connectionist models as the connection
weights represent the memory of the system.

Although a single neuron can perform certain
simple information processing functions, the
power of neural computations comes from con-
necting neurons in a network. The supposed intel-
ligence of artificial neural networks is a matter of
argument. Artificial neural networks rarely have
more than a few hundred or a few thousand PEs,
while the human brain has �100 billion neurons.
Artificial networks comparable to a human brain
in complexity are thus still far beyond the creative
capacity of the human brain. The human brain is
much more complex and, unfortunately, many of
its intellectual functions are still not well known.
ANNs are capable of processing extensive
amounts of data, however, and making predic-
tions that are sometimes surprisingly accurate.
This does not make them intelligent in the usual
‘human’ sense of the word, so the term computer
intelligence may be better way of describing these
systems.

There are many types of neural networks de-
signed by now and new ones are invented every
week but all can be described by the transfer
functions of their neurons, by the learning rule,
and by the connection formula.

2.1. Neurons

The artificial neuron is the building component
of the ANN designed to simulate the function of
the biological neuron. The arriving signals, called
inputs, multiplied by the connection weights (ad-
justed) are first summed (combined) and then
passed through a transfer function to produce the
output for that neuron. The activation function is
the weighed sum of the neuron’s inputs and the
most commonly used transfer function is the sig-
moid function (Fig. 2.).

2.2. Connection formula

The way that the neurons are connected to each
other has a significant impact on the operation of

Fig. 3. Feedforward network.

Fig. 4. Feedback network.

2. Artificial neural networks

An artificial neural network [3,4] is a biologi-
cally inspired computational model formed from
hundreds of single units, artificial neurons, con-
nected with coefficients (weights) which constitute
the neural structure. They are also known as
processing elements (PE) as they process informa-
tion. Each PE has weighted inputs, transfer func-
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Fig. 5. Supervised network with backpropagation learning rule.

the artificial neural network. Just like ‘real’
neurones, artificial neurons can receive either
excitatory or inhibitory inputs. Excitatory inputs
cause the summing mechanism of the next neuron
to add while the inhibitory inputs cause it to
subtract. A neuron can also inhibit other neurons
in the same layer. This is called lateral inhibition.
The network wants to ‘choose’ the highest
probability and inhibit all others. This concept is
also called competition.

Feedback is another type of connection where
the output of one layer routes back to the input of
a previous layer, or to same layer. Two types of
architecture may be identified according to the
absence or presence of feedback connection in a
network. Feedforward architecture does not have
a connection back from the output to the input
neurons and therefore does not keep a record of
its previous output values (Fig. 3). Feedback
architecture has connections from output to input
neurons. Each neuron has one additional weight
as an input that will allow an additional degree of
freedom when trying to minimize the training
error (Fig. 4). Such a network keeps a memory of
previous state so that next state depends not only
on input signals but also on the previous states of
the network.

2.3. Learning rule

There are many different learning rules but the
most often used is the Delta rule or Back-propa-

gation rule. A neural network is trained to map a
set of input data by iterative adjustment of the
weights. The use of the weighted links is essential
to the ANN’s recognizing abilities. Information
from inputs is fed forward through the network to
optimize the weights between neurons. Optimiza-
tion of the weights is made by backward propaga-
tion of the error during training or learning phase.
The ANN reads the input and output values in
the training data set and changes the value of the
weighted links to reduce the difference between
the predicted and target values. The error in
prediction is minimized across many training cy-
cles until network reaches specified level of accu-
racy. If a network is left to train for too long,
however, it will overtrain and will lose the ability
to generalise.

Fig. 6. Kohonen or Self Organizing Map with unsupervised
learning algorithm.
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3. ANN models and learning algorithm

There are many different types of ANNs, some
of which are more popular than others. When
neural networks are used for data analysis, it is
important to distinguish between ANN models
(the network’s arrangement) and ANN algorithms
(computations that eventually produce the net-
work outputs). Once a network has been struc-
tured for a particular application, that network is
ready to be trained. There are two approaches to
training, supervised and unsupervised. The most
often used ANN is a fully connected, supervised
network with backpropagation learning rule (Fig.
5). This type of ANN is excellent at prediction and
classification tasks. Another is the Kohonen or
Self Organizing Map with unsupervised learning
algorithm, which is excellent at finding relation-
ships among complex sets of data (Fig. 6).

3.1. Associating networks with super6ised learning

The goal in supervised learning is to predict one
or more target values from one or more input
variables. Supervised learning is a form of regres-
sion that relies on example pairs of data: inputs
and outputs of the training set.

This type of network is a system of fully inter-
connected neurons organized in layers, the input
layer, the output layer, and the hidden layers
between them. The input layer neurons receive
data from a data file. The output neurons provide
ANN’s response to the input data. Hidden neu-
rons communicate only with other neurons. They
are part of the large internal pattern that deter-
mines a solution to the problem. Theory says that
most functions can be approximated using a sin-
gle hidden layer [5].

The information that is passed from one pro-
cessing element to another is contained within a
set of weights. Some of the interconnections are
strengthened and some are weakened, so that a
neural network will output a more correct answer.
The most commonly used learning algorithm is
back propagation of error. The error in prediction
is fed backwards through the network to adjust
the weights and minimize the error, thus prevent-

ing the same error from happening again. This
process is continued with multiple training sets
until the error is minimized across many sets. This
results in the mapping of inputs to outputs via an
abstract hidden layer.

The number of neurons in the hidden layer
influences the number of connections. During
training phase inputs are adjusted (transformed)
by the connection weights. Therefore, the number
of connections has a significant effect on the
network performance. Too few hidden neurons
will hinder the learning process and too many will
depress prediction abilities through overtraining.
By increasing the number of the hidden neurons
the ANN more closely follows the topology of the
training data set. However exceeding an optimum
number results in tracing the training pattern too
closely.

When the ANN produces the desired output
(i.e. is trained to a satisfactory level) the weighted
links between the units are saved. These weights
are then used as an analytical tool to predict
results for a new set of input data. This is a recall
or prediction phase when network works only by
forward propagation of data and there is no
backward propagation of error. The output of a
forward propagation is the predicted model for
the validation data.

Pattern association is usually supervised learn-
ing. ANNs compete well with statistical methods
in pattern recognition, especially when the sys-
tems contain high level of noise and variation.

3.2. Feature-extracting networks with unsuper6ised
learning

In unsupervised training, the network is pro-
vided with inputs but not with desired outputs.
The system itself must then decide what features it
will use to group the input data. This is often
referred to as self-organization or adaptation. The
self-organising behaviour may involve competi-
tion between neurons, co-operation or both. Neu-
rons are organised into groups of layers. In
competitive learning, neurons are grouped in such
a way so that when one neuron responds more
strongly to a particular input it suppresses or
inhibits the output of the other neurons in the



S. Agatono6ic-Kustrin, R. Beresford / J. Pharm. Biomed. Anal. 22 (2000) 717–727722

group. In co-operative learning the neurons within
each group work together to reinforce their output.
The training task is to group together patterns that
are similar in some way, extract features of the
independent variables and come up with its own
classifications for inputs. ANNs considers the data
they are given, discover some of the properties of
the data set and learn to reflect these properties in
their output. The goal is to construct feature
variables from which the observed variables, both
input and output variables, can be predicted. Fea-
ture-extracting networks can be regarded as princi-
pal component analysers (PCA). They are used as
an alternative to classical PCA for data reduction
purposes, to transform the data set into a new space
with retained information in data set but with a
reduced number of variables (dimensionality). The
goal is to construct a network that will map the
entire training data (both inputs and outputs vari-
ables) at once.

4. Application of ANN in pharmaceutical research

The ANN methodology is based on the attempt
to model the way a biological brain processes data.
It is thus quite different from standard statistical
methods of analysis.

ANN represents a promising modeling technique
especially for data sets having the kind of non-lin-
ear relationships, which are frequently encountered
in pharmaceutical processes. Neural networks re-
quire less formal statistical training, are able to
detect complex non-linear relationships between
dependent and independent variables and all possi-
ble interactions without complicated equations,
and can use multiple training algorithms. In terms
of model specification, artificial neural networks
require no knowledge of the data source but, since
they often contain many weights that are estimated,
they require large training sets. In addition, ANNs
can combine and incorporate both literature-based
and experimental data to solve problems. The use
of ANNs is a new but expanding area in the field
of pharmaceutical research [6–10].

The various applications of ANNs can be sum-
marised into classification or pattern recognition,
prediction and modeling.

Supervised associating networks can be applied
in pharmaceutical fields as an alternative to conven-
tional response surface methodology (RSM). Un-
supervised feature-extracting networks, which can
map multidimensional input data sets onto two-di-
mensional spaces, represent an alternative to prin-
cipal component analysis (PCA). Non-adaptive
unsupervised networks map data sets and are able
to reconstruct their patterns when presented with
noisy samples; they can thus be used for image
recognition.

The potential applications of ANN methodology
in the pharmaceutical sciences are broad, based on
these abilities. They range from interpretation of
analytical data (modeling the pharmaceutical anal-
ysis in quality control), drug design (QSAR and
molecular modeling) and dosage form design (op-
timization of manufacturing processes) to clinical
pharmacy through biopharmacy (pharmacokinetic
and pharmacodynamic modeling, in vitro/in vivo
correlation).

4.1. Pattern recognition and modeling analytical
data

Neural networks are able to recognise patterns
even from noisy and complex data in which there
is a considerable degree of variation and to estimate
non-linear relationships. Therefore, ANNs are use-
ful in all fields of research where the recognition of
peak-shaped signals in analytical data is important,
for example spectral data.

ANNs are useful in determining the composition
of an unknown sample when the spectrum of the
unknown is a superposition of known spectra. One
feature of this technique is that it uses the whole
spectrum in the identification process instead of
only the individual peaks.

The conventional multiple linear regression
(MLR) method involves an iterative process of
spectrum decomposition and regeneration to math-
ematically synthesised spectrum closely matching
the true spectrum. This is a tedious task requiring
the specification of a polynomial function for each
peak to be regressed. Each polynomial equation
can be regarded as a separate model.

Ranitidine hydrochloride is antihistaminic drug,
one of the 20 most frequently prescribed drugs. It
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exists in two polymorphic forms known as Form
1 and Form 2. Diffuse reflectance IR spectral
analysis [11] and X-ray diffraction [12] were com-
bined with ANNs as a data modeling tool
to develop a simple, sensitive and rapid method
for the qualitative and quantitative control of
ranitidine-HCl. Method was used to analyse bulk
drug and to quantify ranitidine-HCl Form 1 from
tablets without prior extraction in the presence
of other components. The technique could sim-
ultaneously distinguish between two crystal mod-
ifications, and identify polymorphic transition
and even quantify it, thus enabling the purity
of the bulk drug substance to be checked. The
ranitidine hydrochloride tablet is a multicompo-
nent tablet formulation in which there is a signifi-
cant overlap of the spectral pattern of
ingredients. Using ANN as a data-modeling tool
solved this problem. The ANN was trained to
recognize specific patterns of constituents of the
formulations from the overall spectral pattern.
When the classification ANN was exposed to
complex tablet formulation samples containing
only ranitidine-HCl Form 1 crystal modification,
it successfully identified and quantified all compo-
nents in tablet formulation down to a concentra-
tion of 0.791.88%. There was no need to extract
the active ingredient and Form 1 was successfully
quantified in the presence of tablet excipients and
additives.

4.2. Modeling the response surface

The usefulness of artificial neural networks for
response surface modeling in HPLC optimization
[13–15] was compared with (non-) linear regres-
sion methods. Retention mapping describes the
chromatographic behaviour of solutes by re-
sponse surface, which shows the relationship be-
tween the chromatographic behaviour of solutes
and components of the mobile phase. The capac-
ity factor of every solute in the sample can then
be predicted, rather than performing many sepa-
rations and simply choosing the best one ob-
tained. Experiments confirmed that predicted
capacity factors of solutes obtained by ANNs
were better than those obtained with multilinear
stepwise regression model.

A non-linear transformation function with a
back-propagation algorithm was used to describe
and predict the chromatographic data for assess-
ing chromatographic peak purity [16]. Simulation
data and practical analytical data for both pure
and mixture samples were analysed with satisfac-
tory results.

4.3. Structure-retention relationships

Predicting chromatographic behaviour from
molecular structure of solutes is one of the main
goals of structure-retention relationship (SRR)
methodology. Artificial neural networks (ANNs)
were used to find molecular parameters related to
the RP retention times and to predict the retention
as a function of changes in mobile phase pH and
composition, along with molecular structure de-
scriptors of separated solutes. An ANN model was
used to correlate the liquid chromatographic be-
haviour of a group of structurally diverse diuretics
with their physical chemical and molecular de-
scriptors and to create a model for the prediction
of retention values of unanalysed molecules [17].

A novel method of untangling overlapped peaks
in chromatograms was proposed [18]. The basic
idea was to find a set of parameters that character-
ize the shape of the overlapped peaks and to use
a supervised network to quantitatively correlate
the parameters with the percentage area of an
individual peak. The proposed method performed
very well with high accuracy and less computing
time compared with other, conventional methods.

4.4. Application of ANNs in pharmaceutical
product de6elopment

The pharmaceutical product development pro-
cess is a multivariate optimization problem. It
involves the optimization of formulation and pro-
cess variables. These relationships are difficult to
model using classical methods. One of the
difficulties in the quantitative approach to formu-
lation design is the understanding of relationships
between causal factors and individual pharmaceu-
tical responses. Furthermore, a desirable formula-
tion for one property is not always desirable for
the other characteristics. The use of ANNs seems
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to be most suitable for dealing with complex
multivariate non-linear relationships. ANNs can
identify and learn correlative patterns between
input and output data pairs. Once trained, they
may be used to predict outputs from new sets of
data. One of the most useful properties of artificial
neural networks is their ability to generalise. These
features make them suitable for solving problems
in the area of optimization of formulations in
pharmaceutical product development.

A response surface methodology (RSM) has
usually been applied to solve problems of optimal
formulations. Prediction of pharmaceutical re-
sponses based on the second order polynomial
equation that is commonly used in RSM is often
limited to a low level, resulting in the poor estima-
tion of an optimal formulation. ANN models
showed better fitting and predicting abilities in the
development of solid dosage forms in investiga-
tions of the effects of several factors (such as
formulation, compression parameters) on tablet
properties (such as dissolution) [19–21]. Impor-
tant relationships were acknowledged with the
ANN model only, whereas the RSM model ig-
nored them. In vitro dissolution rate was success-
fully predicted as a function of product
formulation changes. Predicted optimal formula-
tions gave a satisfactory release profile and ob-
served results coincided well with predictions.

ANNs provided a useful tool for the develop-
ment of microemulsion-based drug-delivery sys-
tems in which experimental effort was minimised
[22]. ANNs were used to predict the phase be-
haviour of quaternary microemulsion-forming sys-
tems consisting of oil, water and two surfactants.
The phase behaviour of a four component mixture
at fixed pressure and temperature can be repre-
sented using a tetrahedron. Full characterization
of such systems would require a large number of
experiments. Only three inputs (percentages of oil
and water and HLB of the surfactant blend) and
four outputs (oil in water emulsion, water in oil
emulsion, microemulsion, and liquid crystal con-
taining regions) were used. Detailed experimental
data were gathered from several ‘slices’ within a
tetrahedron region. Samples used for training rep-
resented �15% of the sampling space. After train-
ing, the ANN was reasonably successful in

predicting other regions of that tetrahedron and
had an accuracy of 85.2–92.9%. In most cases the
errors in the prediction were confined to points
lying along the boundaries of regions and for the
extrapolated predictions outside the ANN’s ‘expe-
rience’.

Another approach was to include a fifth compo-
nent [23], a cosurfactant, for the formulation of
pharmaceutically acceptable drug-delivery systems
and predict the pseudo-ternary phase diagrams for
these systems using only computed physicochemi-
cal properties for the cosurfactants involved.

ANN was also used to simulate aerosol be-
haviour, with a view to employing this type of
methodology in the evaluation and design of pul-
monary drug-delivery systems. It is concluded that
carefully tailored, well trained networks could
provide valuable tools not just for predicting but
also for analysing the spatial dynamics of pharma-
ceutical aerosols [24].

4.5. Quantitati6e structure-property relationship
(QSPR) and molecular modeling

Louis Hammett [25] (1894–1987) first corre-
lated electronic properties of organic acids and
bases with their equilibrium constants and reactiv-
ity. Since then, many mathematical models that
correlate structure with have been developed.
Quantitative structure-activity relationships
(QSAR) methods correlate structural or property
descriptors of compounds with their chemical or
biological activities. The general assumption in
QSPR modeling is that molecular structure is
responsible for the observed behaviour of a com-
pound. These physicochemical descriptors, which
include parameters to account for hydrophobicity,
topology, electronic properties, and steric effects,
are determined empirically or, more recently, by
computational methods.

A number of commercial software products for
physical property prediction exist. Experimental
determination of such properties can be time con-
suming and in some cases, be subject to experi-
mental variation and errors.

A first step in QSAR studies is to calculate a
multitude of structural descriptors as mathemati-
cal representative of chemical structure. The sub-
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set of descriptors that best encodes the investi-
gated property must be found. Testing large num-
ber of all possible combinations of descriptors
might take a lifetime. A more efficient way is to
use genetic algorithms [26–28] (GA), as computa-
tional models of evolution, coupled with ANN. A
GA is an optimization system that uses selection
and recombination processes to generate new
sample points with higher fitness. Once a subset of
descriptors is found the descriptors can be
mapped to the property of interest using a non-
linear computational neural network.

Back-propagation artificial neural networks
(ANNs) were trained with topological indices,
molecular connectivity, and novel physicochemi-
cal descriptors to model the structure-activity re-
lationship of a large series of capsaicin analogues
[29]. The ANN QSAR model produced a high
level of correlation between the experimental and
predicted data. After optimization, the developed
model correctly classified 34 of 41 inactive com-
pounds and 58 of 60 active compounds of 101
capsaicin analogues

Topological connectivity indexes were used to
detect the microbiological activity in a group of
heterogeneous compounds [30]. The methods fol-
lowed were stepwise linear discriminant analysis
(linear analysis) and artificial neural network
(non-linear analysis). Although both methods are
appropriate to differentiate between active and
inactive compounds, the artificial neural network
was better and showed in a test set a prediction
success of 98%, versus the 92% obtained with
linear discriminant analysis.

Neural networks produced useful models of the
aqueous solubility within series of structurally
related drugs with simple structural parameters
[31,32]. Topological descriptors were used to link
the structures of compounds with their aqueous
solubility.

A three-layer, feed-forward neural network has
been developed for the prediction of human intes-
tinal absorption (HIA%) of drug compounds
from their molecular structure [33]. The data set
contained 86 drug and drug-like compounds
whose molecular structure was described with six
descriptors. Given the structural diversity and
bias of the data set, this is a good attempt at

modeling human intestinal absorption using
QSPR methods. The process of intestinal absorp-
tion of drug compounds depends both on com-
plex biological processes and on the compounds’
physicochemical properties. This model does not
produce an exact rank ordering, but is clearly
differentiates the well absorbed compounds from
the purely absorbed ones and thus illustrates the
potential of using QSPR methods to aid the drug
development process.

A four layer genetic neural network (GNN)
model was used to predict the degree of drug
transfer into breast milk, depending on the molec-
ular structure descriptors and was compared with
the current models [34]. The set of 60 drug com-
pounds and their experimentally derived M/P val-
ues used in this study were gathered from the
literature. A total of 61 calculated structure fea-
tures including constitutional descriptors, topo-
logical descriptors, molecular connectivity,
geometrical descriptors, quantum chemical de-
scriptors, physicochemical descriptors and liquid
properties were generated for each of the 60 com-
pounds. The M/P values were used as the ANN
output and calculated molecular descriptors as the
inputs. The best GNN model with 26 input de-
scriptors is presented, and the chemical signifi-
cance of the chosen descriptors is discussed.
Strong correlation of predicted versus experimen-
tally derived M/P values (R2 greater than 0.96)
for the best ANN model confirmed that there is a
link between structure and M/P values. The
strength of the correlation was measured by the
quality of the external prediction set. With an
RMS error of 0.425 and a good visual plot, the
external prediction set ensures the quality of the
model. Unlike previously reported models, the
GNN model described here does not require ex-
perimental parameters and could potentially
provide useful prediction of M/P ratio of new
potential drugs and reduce the need for actual
compound synthesis and M/P ratio measure-
ments.

4.6. Protein function and structure prediction

As a technique for computational analysis, neu-
ral network technology is well suited for the anal-
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ysis of molecular sequence data. It has been ap-
plied successfully to a variety of problems, rang-
ing from gene identification to protein structure
prediction and sequence classification [35,36].
These results are valuable for the further study of
the relationship between the structure and func-
tion of proteins. Such methods can be extremely
useful because a structural similarity may repre-
sent an evolutionary relationship that is unde-
tectable by sequence analysis. It may also provide
important information about protein design and
the prediction of protein tertiary structure.

Livingstone et al. [37] has discussed the advan-
tage of networks in the simulation of drug
molecules and protein structures. It is also possi-
ble to compare three-dimensional protein struc-
tures in a similar manner to sequence database
searching. A back-propagation ANN was used for
pattern recognition in protein side-chain-side-
chain contact maps [38]. The network was trained
on a set of patterns that are common in side-chain
contact maps of protein structures. The resulting
network could distinguish between original and
randomized patterns with an accuracy of 84.5%
and a Matthews’ coefficient of 0.72 for the testing
set. ANNs with GA training algorithms have been
used in sequence alignment and assembly for both
RNA and DNA molecules and in determining the
folding and secondary structure of RNA strands
[39–41] and acknowledged the quantitative simi-
larity among tRNA gene sequences. These results
demonstrated the efficiency of the artificial neural
network method in sequence analysis of biological
molecules [42].

4.7. Pharmacokinetics

Drug dosages and drug choices are determined
by knowledge of the drug’s pharmacokinetics and
pharmacodynamics. Often, insufficient informa-
tion is available to determine the pharmacokinet-
ics of a drug or which drug will have a desired
effect for an individual patient. ANNs represent a
novel model-independent approach to the analysis
of pharmacokinetic (PK)-pharmacodynamic (PD)
data [43,44]. ANNs have been shown to be flex-
ible enough to predict PD profiles accurately for a
wide variety of PK-PD relationships (e.g. effect

compartment linked to the central or peripheral
compartment and indirect response models). In
addition ANNs could accurately predict PD profi-
les without requiring any information regarding
the active metabolite. Since structural details are
not required, ANNs exhibit a clear advantage
over conventional model-dependent methods.

4.8. Molecular de no6o design and combinatorial
libraries

Structure based drug design is better than the
traditional approaches to designing new drugs as
it can save large amounts of time and money. One
goal of computational chemistry is to develop
quantitative models that are able to predict activi-
ties of compounds quickly and accurately. These
models can be based on the number of hydrogen
bonds, hydrophobic surface area, interaction en-
ergies, desolvation or other calculations. The
quality of the model is then subject to the descrip-
tion of these parameters.

There are at least two possible ways to find a
compound that can fit into the active site. One
possibility is to search through databases of
known structures and to identify those entities
that fit into the active site. However, this ap-
proach does not address the issue of conforma-
tional flexibility and the number and variety of
structures is limited by the size of the database
used. Another approach uses a library of frag-
ments (or molecules). These fragments are then
connected to form a single molecule. There are
several advantages to this approach. It is very fast
and due to the large number of possible fragment
combinations the variety of molecules that can be
generated is enormous.

Molecular similarity searching has, in recent
years, become a popular way of providing useful
leads in the search for new or improved bioactive
molecules. It involves evaluating a large range of
chemical structures to find those that show either
similarity with each other or complementarity
with a target structure. With the advancement of
computer technology and improved search al-
gorithms, evaluation of large databases of chemi-
cal structures can be performed efficiently to
guide the design of novel molecules with appro-
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priate properties. GAs can be used to reduce the
number of potentially useful molecules to control-
lable numbers of possibly lead compounds.
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